BMW M140i – what does the new B58 bring to the party?

I recently caught myself reflecting on the past 10 years of driving and cars, a lot has changed over the last ten years with pretty much the ‘death’ of the naturally aspirated manual car, instead we have a whole host of new technologies taking over, a large one being forced induction.

During this I kind of came to the realisation that it has been one of the best golden ages for the car industry, in terms of development and technological advancement. Over the past ten years we’ve seen many new and fancy technologies being invented and being made popular by main stream manufacturers including the 8-speed, 9-speed or even 10-speed automatic transmissions (which are world apart from auto’s of days gone past), turbochargers and superchargers, electric vehicles (EV), hydrogen fuel cell power, self-driving cars, LED lighting, the list goes on..

BMW saw this trend of forced induction as a method to increase power and torque whilst helping to hit the stringent EU emissions laws.

BMW has been leading the way though its use of turbocharged engine technology, which has started a whole new era for BMW performance cars. From the introduction of the ground-breaking twin-turbocharged N54 and the later N55, N63, N20 etc., to today where the latest and greatest B-series engines are now in production (B37/38, B47/48, B57/58).

Having previously owned an N54 powered e92 335i, and currently owning the latest B58 powered M140i, I wanted to take a look at just how far the engine technology has come since the introduction of the twin-turbocharged N54.

I’m now going to take a more in-depth look at the B58 engine, based on multiple sources of technical information and also my observation during ownership through the M140i.

A Brief bit of Background

Back in the start of the 21st century, there is a trend quietly emerged within the auto industry, which is the desire for power. In another word: people wanted higher engine output.

At that time, 6-cylinder engines usually had around 200 hp, and the territory above 300 hp belongs to more high-end engines such as V8/V10/V12.

The first auto maker that started the “power war” in the affordable pricing sector is Nissan – it released the Infiniti I35 in late 2001, equipped with the VQ35DE V6 engine which passed the 250 hp mark for the first time within entry-level luxury cars. Starting then, BMW was under huge peer pressure, below is the timeline overview:

  • Late 2001: Nissan VQ35DE V6, 255 hp (2002 Infiniti I35)
  • January 2005: Nissan VQ35DE V6, 300 hp (2005 Nissan 350Z 35th Anniversary Edition)
  • January 2005: Toyota 2GR-FE V6, 280 hp (2005 Toyota Avalon)
  • April 2005: Toyota 2GR-FSE V6, 306 hp (2006 Lexus IS350)
  • April 2005: BMW N52 V6, 255 hp (2006 BMW 330i)
Toyota 2GR-FSE Engine

Also worth noting, that the N52 also incorporated the lean burn technology, which 2GR-FSE does not have. Therefore this indicates Toyota, at this point in time, has acquired more advanced design capabilities in NA engines. Being able to extract over 300bhp from a 6 cylinder engine for the first time.

As a response to the Toyota 2GR-FSE engine, BMW rolled out the N54 twin-turbo engine the following year in the e90 and e92 335i.

We now know that BMW had been secretly developing the N54 for years, and was taking a more longer-term view (they chose a different route to generate the power: turbocharging). What BMW had missed is it underestimated its competitors’ R&D progress, which forced BMW to release the N54 engine in hurry.

BMW N54 Twin Turbo I6 Engine

Because of this, there were some aspects of the N54 that BMW later found, could be done better. So three years later, BMW released its successor, the N55. Obviously the N55 cannot be said to be 100% perfect, partially due to its development falls into the period of 2008 financial crisis. Although N55 does have lots of technical enhancements, it also compromised in places.

However, in 2016, we were gifted with the latest BMW engine, the B58. The B58 engine is totally different than the N54 and N55. It has true performance oriented design, while the previous N54/55 have limited potential which prevents them from taking higher loads.

Key Changes

There are two main changes that distinguish B58 from N54/55:

  1. The B58’s cylinder block is closed deck; while N54/55 are open-deck;
  2. B58 is using air-to-liquid intercooler, compared to N54/55’s air-to-air intercooler.

Closed Deck Design

Let’s first take a look at B58’s closed deck design. By nature, a closed deck cylinder block is much stronger than the open deck, therefore it is more suitable for high load and high pressure application. This explains why for the S55 engine (used on M3/M4), BMW needed to convert the N55’s open deck block to a closed deck design. This is also the reason why BMW never officially boost N54/55’s output to over 340 hp.

Open Deck Design of the N54 Cylinder Block
Closed Deck Design of the New B58 Engine Cylinder Block

Although B58’s closed deck is structurally strong, it also has shortcomings. For example it carries a higher manufacturing cost; Also the coolant flow is more restricted, which has meant that BMW has had to use a dedicated heat management module on the B58 engine.

On the other hand, this does not mean open deck design is bad. Open deck block is lighter and has better cooling effect, therefore it is more suitable to applications that does not call for high cylinder pressure.

The N54/55 uses cast iron cylinder sleeve, but B58 is different: it uses one latest technology called “Electric Arc Wire Spraying”. This is a type of the ferrum plasma spray method, which creates a thin layer (0.3 mm thick) of iron on the cylinder wall surface and thus eliminates the need for using the cylinder sleeves. The ultimate goal is to save weight. For your reference: plasma spray is an exotic technique previously (for example GT-R, LFA etc.), however nowadays its cost is lowered so significantly that even Ford uses it in the EcoBoost engine family.

A BMW 4 cylinder engine block is under the Electric Arc Wire Spraying (LDS) process

You may also find most of the BMW inline six engines are all undersquare, and this is exactly the same on B58 too. The B58 engine has a bore of 82 mm and stroke of 94.6 mm.

The purpose of such geometry design is not for lower-end torque, but with consideration in packaging. Had BMW used a shorter stroke, in order to maintain the same displacement, its cylinder bore need to be much larger. Since here 6 cylinders are placed inline together, this will lead to a excessively long cylinder block, and thus hard to arrange spaces inside the engine compartment (particularly in a 1 series chassis), or requires the vehicle to have a much longer bonnet (which in my opinion is unnecessary). Also, a longer crankshaft (caused by long block) is weaker too.

Cutaway of the B47 diesel engine, showing the B series piston’s stroke
Cutaway of the B48 engine, notice the different shape of the piston head

However, turbocharged engines may benefit from the long stroke also: because of turbo lag, it is good to have higher torque when the engine is under naturally aspiration mode, which contributes to the driver’s perceived throttle response.

From everything I have read online It does seem like the B58’s closed deck design costs BMW more to build. However, taking a more holistic view of the engine family, it is another story. The B58 is not a single product, in fact it is a member of BMW’s latest B-series engine family. The B engines use the modular design principle: same bore, same stroke, and even same block between gasoline/diesel versions. Therefore, all of these engines can share many of the design and manufacturing process, and ultimately lower the total cost.

Air-to-liquid Intercooler

Next biggest change is the intercooler. Almost all “serious” high performance turbo engines use air-to-liquid intercoolers, mainly because it is more effective and more stable. BMW have chosen this route for the B58.

Highlighted section is the air-to-liquid intercoolers

The air-to-water intercooler on B58 is integrated into the intake system, which is on top of the engine and sits beneath the cylinder head. Since the intake air no longer needs to be routed to the intercooler in the front bumper (like the N54/55), such compact design brings huge benefit for the B58: the intake path is shortened significantly, which quite significantly improves throttle response, something that manufacturers want to improve in turbocharged cars making them feel more like naturally aspirated engines.

Intake air path comparison: N55 v.s B58

There are other hints which indicate the B58 is designed as a high output engine. For example its crankshaft is forged, stronger than N55’s casted unit; also the piston connecting rod is also forged on the B58.

B58’s crankshaft

In one word: closed deck design and also the air-to-liquid intercooler, determines B58 is fundamentally different from its N54/N55 predecessors.

More Detailed Look at the Improvements

Those two are the main design differences, but on top of the improvements mentioned above, the B58 also incorporates many remarkable new designs. They aren’t stand alone improvements, basically they all work together to get the most out of the new engine.

Heat Management Module

As mentioned above, the B58’s closed deck cylinder causes more restricted coolant flow, and it raises a tougher requirement for the engine cooling system.

B58: heat management module
Highlighted: the heat management module’s drive pulley

Therefore, BMW uses a heat management module on the B58, which is mechanically powered directly by the crankshaft through a serpentine belt. Inside the module, coolant flow rate is adjusted by a rotary valve.

Using a mechanical coolant pump avoided the hassle of possible failure of the electric type, like in previous BMW engines. However, to deal with the situation that the turbo still need to be cooled after engine is turned off, an extra dedicated electric pump is added to the turbo unit to tackle this issue – this is also used if stop/start is activated. I know a lot of people worry about stop/start and the turbo, but clearly BMW have thought about this in their design.

Engine Weight Distribution Optimisation

On the N54/55 engine, they place the alternator, AC compressor, timing chain and engine oil filter assembly towards the front portion of the engine, therefore the engine’s centre of gravity tends to be front-biased.

However the B58 treats this differently by placing the oil filter and its radiator, VANOS timing chain at the back of the engine. Therefore improving the weight distribution, however this comes with a price when it comes to added maintenance difficulty.

The engine oil filter assembly is located in the back

Although the oil filter cap is hiding a little bit deep in the engine bay, it is still not too hard to reach. However, the VANOS system is now a huge pain for maintenance, since it is located right behind the engine and extremely closed to the firewall, it is impossible to service the VANOS system without taking the whole engine out of the engine bay.

B58’s VANOS components are located right behind the engine block

Since there will be noises when the timing chain is operating, BMW placed a sound insulation foam between the cylinder head/valvetrain cover and the passenger cabin firewall.

Valvetronic System and Throttle Body

VANOS is responsible for timing adjustment, and Valvetronic is used for control the lift height of the valves and acts as the throttle body.

The valvetronic used on the N55 is the 3rd generation, and the one on the B58 is the latest 4th generation. There is no fundamental change in the working principle, the major difference in the B58’s Valvetronic system is it moves the servo motor out of the valve cover (which was part of the N55’s design), and places it outside at the top right hand side of the cylinder head.

Such design brings two major advantages: (1) it significantly reduced the installation space; (2) It brings down the engine’s total height and lowers the engine’s center of gravity.

Highlighted: B58’s Valvetronic external servo motor

Theoretically speaking, a throttle body is unnecessary given the presence of the Valvetronic. However B58 is still equipped with a real throttle body, in front of the intercooler’s entrance.

The throttle body’s purposes are: (1) when there is a sudden load change, the Valvetronic mechanism may not react fast enough to adapt to the new operation requirements; the throttle valve can help to provide a seamless transition; (2) a slight vacuum is needed for the engine ventilation; (3) the throttle body acts as a redundant backup in case the Valvetronic malfunctions.

B58’s throttle body

Fuel System

One major change to the B58’s fuel delivery system is each of the injector is now bolted to the rail directly, not through an extra high pressure line as in the N55. The benefit is less pressure loss (the longer the path the greater the loss) and slightly faster and accurate pressure control.

B58’s six fuel injectors are directly bolted onto the fuel rail

The B58 is still using the solenoid valve injectors, not the more expensive piezo unit found in the earlier N54 and the current N63 engine. The reason of not using piezo injector is due to the high sulfur content in US market’s gasoline, which makes implementing the “lean burn” feature impossible.

The Bosch solenoid injector used on the B58 engine

Turbo Charger

The B58 is still using a twin-scroll type turbocharger similar to the one on the N55, however it is larger in dimension. Compared to the unit on N55, the B58 turbocharger has a 6% larger turbine, and the compressor wheel diameter is also 10% larger, therefore the B58 gains 20% in boost pressure.

B58’s twin-scroll turbocharger, and also the electronic wastegate control unit

From the below official power/torque curve chart, the power output has a plateau area after 5,000 RPM. This is most probably due to artificial limiting logic in the ECU software, or BMW plots that curve on purpose – since any “unconstrained” power output should be a smooth curve, not with such an abrupt plateau like this one below.

Therefore this indicates the B58 should have a high output version (and in fact BMW now offers the M Performance Power Kit on 2016 340i, which boosts the B58 to 355 hp and 370 lb-ft).

Output curve comparison: B58 v.s N55

The B58 engine’s turbocharger utilises an electrical actuator to control the wastegate valve; this is a different approach than the N55 engine, which uses a vacuum-controlled charging pressure control system. However because of the high heat generated from the turbocharger, on M140i’s application, BMW places a heat shield around the electrical actuator component.

Metal heat shield around the electrical actuator unit


The B58 engine represents the BMW’s latest powertrain technology: new architecture, new design ideas and new approaches.

The closed-deck design and also the integrated air-to-liquid intercooler grant it a large advantage over the previous N55.

From my experience with the B58 powertrain in the M140i, it provides quick throttle response, the feel of turbo lag is so faint that it is almost impossible to be perceived in daily driving conditions – you have to use transmission’s manual mode to detect it.

With the B58 engine, BMW finally regains its power to compete in the 350hp 6-cylinder engine sector, against Mercedes-Benz’s M276 DELA30, and also Audi’s new 3.0T V6.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s